Journal of Bionic Engineering ›› 2019, Vol. 16 ›› Issue (6): 1103-1115.doi: 10.1007/s42235-019-0122-4
Sami Emad Alkhatib, Hassan Mehboob, Faris Tarlochan
Sami Emad Alkhatib, Hassan Mehboob, Faris Tarlochan
摘要: Despite the success of cementless hip stem, stress shielding still presents a serious problem leading to bone resorption. Stems in-corporating porous cellular structures represent a promising solution. Therefore, this study validates the finite element models of titanium (Ti) alloy (Ti-6Al-4V) porous stem and effective porous stems. Several effective porous stems with strut thicknesses 0.33 mm –1.25 mm (18% – 90% porosity) under different loading conditions were analyzed. The results of finite element models revealed that changing the load type and porosity affect stress shielding. Climbing loads yield the maximum stress levels while walking loads result in the lowest stresses in the stems. Furthermore, the point load results in the maximum stress shielding and micromotions (?19% to 18%, 40 μm to 703 μm), as compared to walking (?17.5% to 3%, 35 μm to 242 μm) and climbing loads (?7% to 1.6%, 30 μm to 221 μm). Finally, effective porous stems of strut thickness 0.87 mm exhibit the lowest stress shielding signals (<5%) under all loading conditions.